A NEW COMPOUND, $Lu_2V_2O_7$

Kenzo KITAYAMA and Takashi KATSURA

Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

A new compound, $\operatorname{Lu_2V_2O_7}$, which belongs to pyrochlore-type, has been successfully synthesized under a low oxygen partial pressure at 1200°C and its formation conditions in oxygen partial pressure, crystal parameters including lattice constant, unit cell volume, density, spacing, and relative intensities were determined.

Up to date, in the lanthanoid-V-O system, many studies on LnVO_3 and LnVO_4 have been reported. Pyrochlore-type compounds containing double oxides of trivalent and tetravalent have been presented by Roth. But in previous reports, the presence of a compound, $\text{Lu}_2\text{V}_2\text{O}_7$, has not yet been reported.

Through the present study of the phase equilibria in the $\text{Lu}_2\text{O}_3\text{-V}_2\text{O}_3\text{-V}_2\text{O}_5$ system, the new compound, $\text{Lu}_2\text{V}_2\text{O}_7$, was synthesized and we determined a cell constant, unit cell volume, density, spacing, and relative intensities.

The general experimental procedures and apparatus adopted in the present experiment were the same as those described in a previous paper. As starting materials, $\text{Lu}_2\text{O}_3(99.9\%)$ and V_2O_5 , which was made from the guaranteed reagent grade of NH_4VO_3 by heating at 500°C in air for 24 hours, have been employed. The calculated weights of each Lu_2O_3 and V_2O_5 (one in mole ratio) were fully mixed in an agate mortar under ethyl alcohol. The mixed sample was heated at 600°C at $\text{Po}_2 = 10^{-10.0}$ atm to reduct V_2O_5 to V_2O_3 . After 24 hours, the temperature of furnace was increased to 1200°C in the same Po_2 . Then the sample was heated for 6 hours and quenched.

The thermogravimetric results were shown in Fig. 1 in the relationship between the oxygen partial pressures and weight changes of the sample, where Wo₂ means the weight change of the sample and W_T is an oxygen increase from LuVO₃ to LuVO₄. Lu₂O₃ is not affected in the present experimental conditions. In the range of Po₂ of $10^{-8.50}$ to $10^{-8.05}$ atm, the new phase is appeared as shown in Fig. 1.

The new phase seems to have slight composition changes with oxygen partial pressure. The compound is not stoichiometric and has a composition of $\text{Lu}_2\text{V}_2\text{O}_{6.93}$ by means of the thermogravimetry.

Sample used for X-ray powder diffraction was made by the quenching method by hunging for 5 days at log Po $_2$ = -8.30 atm. The assignment of indices was done with the aid of previous data of Yb $_2$ Ti $_2$ O $_7$ The indices thus obtained fit the data of Yb $_2$ Ti $_2$ O $_7$ quite well as shown in Table 1. The lattice constant was determined by the powder X-ray diffraction method with Ni-filtered CuK α_1 radiation and with a slow scanning speed of 0.5° per minute. Instrumental errors were calibrated by

h	k	1	d _{obs}	dcal	I _{obs}	h	k	1	d _{obs}	dcal	I _{obs}
	_	-	- 707		20		_	•	7 0 11 7 0	7 O 1 7 7	
1	1	1	5.737	5.735	39	8	0	0	1.2419	1.2417	9
3	1	1	3.005	2.995	31	7	3	3	1.2136	1.2136	3
2	2	2	2.865	2.868	100	7	5	1	1.1470	1.1470	5
4	0	0	2.4832	2.4834	46	6	6	2	1.1395	1.1395	19
3	3	1	2.2787	2.2789	35	8	4	0	1.1108	1.1106	16
5	1	1	1.9111	1.9117	16	9	1	1	1.0902	1.0904	5
4	4	0	1.7557	1.7560	57	8	4	4	1.0138	1.0139	14
5	3	1	1.6792	1.6791	16	6	6	6	0.9557	0.9559	14
5	3	3	1.5147	1.5149	4	8	8	0	0.8780	0.8780	6
6	2	2	1.4975	1.4976	51	9	5	5	0.8679	0.8679	4
4	4	4	1.4339	1.4338	15	10	6	2	0.8395	0.8396	16
7	1	1	1.3909	1.3910	6	8	4	4	0.8278	0.8278	14
7	3	1	1.2933	1.2933	5						

Table 1. Spacing and Relative Intensities

measuring the diffraction angles of a standard specimen of silicon. The new phase has a cubic system and lattice constant is 9.934±0.001 A, unit cell volume 980.3±0.1 A^3 . In Table 1, spacing and relative intensities are given. From the systematic absence of h \bar{k} 1, even of h + k, k + 1, and l + h in h k 1, and even of h + l in h h 1, the space group was determined to be Fd3m as well as Yb₂Ti₂O₇. Density was also determined to be 7.64 g/cm³ by the usual powder method. This value is in good agreement with the value, 7.62, which was calculated from the obtained unit cell

volume, formula weight, and Z = 8. Details of the phase equilibria in the $\text{Lu}_2\text{O}_3\text{-V}_2\text{O}_3\text{-V}_2\text{O}_5$ system at 1200°C will be published in the near future.

Fig. 1. The relationship between oxygen partial pressures and weight changes of sample, $\text{Lu}_2^{0}_3/\text{V}_2^{0}_5 = 1$.

References

- 1) W. O. Milligan and L. W. Vernon, J. Phys. Chem., 56, 145 (1952).
- 2) National Bur. Stand. Rept., No. 8944 (1965).
- 3) H. Brusset, R. Mahe, and A. Deboichet, C. R. Acad. Sc. Paris, 274, 1293 (1972).
- 4) G. J. McCarthy, C. A. Sipe, and K. E. McIlvried, Mat. Res. Bull., 9, 1279 (1974).
- 5) R. S. Roth, J. Res. Nat. Bur. Stds., 56, 17 (1956).
- 6) T. Katsura and A. Muan, Trans. AIME, 230, 77 (1964).
- 7) X-ray powder data, Card 17-454, A. S. T. M.